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Design of New Materials

1.1. DefineDefine – objective, goals, approach, boundaries, 
constraints, etc., in terms of 1-2 main properties

2.2. FocusFocus – on the most critical properties

3.3. UnderstandUnderstand – the controlling/fundamental 
mechanisms

4.4. ManipulateManipulate – composition, structure properties

5.5. Test and ConfirmTest and Confirm – determine if the material 
meets your requirements – preferably in a realistic 
environment

Repeat As NecessaryRepeat As Necessary
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Objectives:
• Develop high-temperature shape memory alloys 

(HTSMA), with high-work output, based on 
derivative TiNi or TiX compositions, for aerospace 
applications
– Optimize and mature current 300 °C alloys (represents significant 

improvement compared to commercial alloys limited to ~70 °C)     
– Develop new alloys for up to 500 °C capability 

• Secondary objectives 
– Develop technologies for processing SMA in product form 

desired for the application (e.g., rod, wire)
– Characterize physical, mechanical, and shape memory 

properties sufficient for Preliminary Designs 
– Integrate these new materials into actuator design concepts 

and bench test designs 
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Shape Memory Alloys – Alloys that have a “memory.”
These materials can be deformed at low temperature and recover 
their original shape upon heating.  Shape Memory Effect
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Shape memory effect is caused by a reversible 
change in crystal structure: the structure 
transforms from the high temperature Austenite 
to low temperature Martensite phases 



5DLT Forum 4/7/2006

Shape Memory Effect vs. Work
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• Shape Memory Effect – is shape change under stress-
free (no-load conditions)

• Work (∫σ dε) – shape change against a significant bias 
force: e.g., 
– The material itself acts as a compact, solid-state actuator
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At 4 J/cm3 a 44 mil wire 25” long is capable of lifting 44 lbf 0.5”
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High-Temperature Shape Memory Alloys are an enablingenabling
technology to a host of “smart” structures in jet engines

• High force per volume/weight - compact, lightweight
• Solid State - eliminates hydraulics, pneumatics, mechanical systems

simple, frictionless, quiet, maintenance free
• Passive control - eliminates sensors, electronics
• Can be actively controlled for high-force, precision movements
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Design of New Materials

1.1. DefineDefine – objective, approach, goals, boundaries, 
etc. 

2.2. FocusFocus – on the most critical properties
– High temperature capability high trans. temp.
– Actuator good work output
– Applications correct product form (i.e., wire)

3.3. UnderstandUnderstand – the controlling mechanisms

4.4. ManipulateManipulate – composition, structure properties

5.5. Test and ConfirmTest and Confirm – determine if the material 
meets your requirements – preferably in your 
application
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Prior Art -- Development of High-Temperature 
Shape Memory Alloys
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• High Temperature • High Work Output

• High transformation temperature known for almost 30 years
• Prior focus on transformation temperatures and at best SME 
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Transformation Temperature (oC)
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Viable Alloys Based on Work Behavior 
Identified By NASA

Transformation Temperature  (oC)
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Design of New Materials

1.1. DefineDefine – objective, approach, goals, boundaries, 
etc. 

2.2. FocusFocus – on the most critical properties

3.3. UnderstandUnderstand – the controlling mechanisms

4.4. ManipulateManipulate – composition, structure properties

5.5. Test and ConfirmTest and Confirm – determine if the material 
meets your requirements – preferably in your 
application

Repeat As NecessaryRepeat As Necessary
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Understanding the Factors Controlling Work 
Output in HTSMA
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Temperature (oC)
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Yield Strength Behavior of NiTiPd Alloys
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Even Good Work Capability is Not Sufficient
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NiTi-30Pd alloys have transformation 
temperatures and single cycle work output 
comparable to that of NiTi-20Pt alloys

The strain-temperature loops do not 
close at any stress level resulting in 
permanent (plastic) deformation with 
each cycle
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This is a phenomenon known as 
“walking” and effects the dimensional 
stability of the material during use.  It is 
critical to avoid walking in applications 
requiring repeated cycling, in order to 
maximize fatigue life and minimize drifting 
of the zero point in SMA actuators
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SMA Design for Optimum Work Output 
and Dimensional Stability during Cycling

1. Low stress for deformation by detwinning of the 
martensite phase

2. Maximize the resistance of the martensite phase to slip 
3. Maximize the yield strength of the austenite phase
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Design of New Materials

1.1. DefineDefine – objective, approach, goals, boundaries, 
etc. 

2.2. FocusFocus – on the most critical properties

3.3. UnderstandUnderstand – the controlling mechanisms

4.4. ManipulateManipulate – composition, structure properties

5.5. Test and ConfirmTest and Confirm – determine if the material 
meets your requirements – preferably in your 
application

Repeat As NecessaryRepeat As Necessary
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SMA Design for Optimum Work Output 
and Dimensional Stability during Cycling

1. Low stress for deformation by detwinning of the 
martensite phase

2. Maximize the resistance of the martensite phase to slip 
3. Maximize the yield strength of the austenite phase

This can be accomplished by typical metallurgical 
processes such as:

• solid solution alloying
• precipitate strengthening 

• thermomechanical processing
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Solid Solution Strengthening: 
NiTiPdX Alloys
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Computational Modeling as a Guide 
to Alloy Design
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Percent Alloying Addition, X, (Pd, Pt, Au) for
Ni50-xPdxTi50, Ni50-xPtxTi50, Ni50-xAuxTi50
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Design of New Materials

1.1. DefineDefine – as much as possible up front: objective, 
approach, goals, boundaries, etc. 

2.2. FocusFocus – on the most critical properties

3.3. UnderstandUnderstand – the controlling mechanisms

4.4. ManipulateManipulate – composition, structure properties

5.5. Test and ConfirmTest and Confirm – determine if the material 
meets your requirements – preferably in your 
application

Repeat As NecessaryRepeat As Necessary
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HTSMA Wire & Rod Production
Multiple Extrusion for Rod 

Production
• Multiple extrusion (currently 

performed at Anomet, Inc.) 
followed by centerless grinding is a 
viable commercial process for the 
fabrication of bulk quantities of 
NiTiPt rod and coarse wire

– down to 0.045” diameter
• This material has been chosen for 

incorporation into demonstration 
projects by Continuum Dynamics 
under two separate Phase II SBIRs

– high speed inlet (SSBJ)
– core exhaust chevron

Drawing Can be Used to Produce 
Fine Diameter NiTiPt Wire

• Using extruded precursor rod, 
Dynalloy, Inc. has developed a 
processing schedule for cold drawing 
NiTiPt/Pd rod into fine wire 

– diameters less than 0.005” are 
possible 

• Fatigue testing of 20 mil wire is 
currently underway at GRC

120 ft. of 60 mil NiTi-20Pt rod 20 mil NiTi-20Pt wire
.045’’ diameter wire for tension element 
actuation and 0.150 dia. rod for possible 
compression actuator 
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NiTiPt Wire & Rod Post-Processing Development
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• Even though the NiTi-20Pt wire can be used to much higher operating 
temperatures, it is dimensionally more stable than the best commercial alloys
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Application of HTSMA

• Processing of HTSMA in appropriate form, 
(e.g. wire), enables the accelerated maturation 
of these materials by rapid insertion into 
component demonstrations 

• SMA’s can be used in either active or passive 
designs.  

– Passive:  The material heats up during normal 
engine operation and actuates automatically
– Active:  The material is used below it’s 
transformation temperature and supplemental heat 
(eg., electrical resistance heating) is used to actuate 
“on demand.”
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Adaptive Chevrons For Core Exhaust Applications
(QAT, Prop21)  

• Need chevrons in the exhaust 
flow during take-off to reduce 
noise, and remove them during 
cruise to maximize fuel efficiency
• Adaptive fan chevrons developed 
by Boeing / NASA LaRC

• Fan exhaust gas temperature 
is approximately 80 oC
• Core exhaust gas 
temperature is approximately 
650 oC
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Chevron Bench Test With NiTiPt 
0.025” Spring Steel Chevron (8% of full scale stiffness) Actuated via NiTiPt Wire

(single strand of 45 mil dia. NiTi-20Pt Wire)

Neutral 
Position

Full 
Deflection
(0.75” at tip)

• NiTiPt (high-force, high-temperature) SMA wire developed by NASA GRC used in 
conjunction with CDI “cut chevron design” as proof of concept for a viable core exhaust 
chevron
• Advantages: 

Concept scalable to flight hardware
Design is more than 5 times more efficient than typical approach

(full scale chevron could be actuated by single braid of 4-5 wires)
Reproducible movement of the chevron (purely elastic); built in stop
HSTMA actuator wire is not exposed to direct exhaust stream
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2D Inlet to be Developed by Continuum DynamicsContinuum Dynamics to Raytheon Raytheon 
Specifications Using NASANASA NiTiPt Wire
Supersonic Wind Tunnel Test Scheduled for late Summer 

Raytheon seeks lightweight technology for SSBJ to adjust:
a) angle of secondary compression ramp
b) position of overall two-ramp structure for off-design flow states

M = 1.6

M < 1.6 SMA actuation used
to “close down” the ramp
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Active Clearance Control Concept 
Can Compensate For Blade Tip Seal Wear

(With J. Decastro, K. Melcher, B. Steinetz)
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• Components fit within                          
original footprint plus flexible tail

• Low power 10 watt
• With proper current & duty cycle 0.3 s 

actuation time

HTSMA actuated Flow Control Rod for 
T700 Engine

• Goal: design flow control actuator for integration within an 
operational T700 engine for compressor stability enhancement

• Prototype actuator built using experimental Dynalloy (Ni,Pd)Ti
SMA (140 °C capability), similar strain characteristics as new 
NASA 260 °C NiTi(Pd,Pt) alloy 

• 20” flexible device for .25” deflection.  Actual needs < .14”
deflection.

Schematic of actual prototype

Current pneumatic 
actuator

IRD04-40/49
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Advanced HTSMA Linear Actuator For T700 
Engine Flow Control
(Mark Stevens)

• Actuator design with opposed biasing springs
• First foray into the development of the materials technology for making 

a HTSMA springs 
– Shape setting / training
– Characterization of shear prop.
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Summary 
• NASA GRC is actively developing a series of high-
temperature versions of commercial shape memory alloys 
and the advanced processing techniques necessary to 
produce these new alloys in wire/rod form for use in 
“adaptive” engine components and high speed morphing 
structures

• A number of applications are already under study and 
many more are possible  
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