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The External Tank (ET)
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External Tank’s Spray On Foam Insulation (SOFI) is applied
to maintain cryogenic propellant quality, minimize ice/frost formation,
and protect the structure from ascent, plume and reentry heating.
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Columbia Accident Investigation Board (CAIB) found that .........

“the cause of the loss of Columbia and its crew was a breach in the Thermal Protection

System on the leading edge of the left wing. The breach was initiated by a piece of insulating
foam that separated from the left bipod ramp of the External Tank and struck the wing in the
vicinity of the lower half of Reinforced Carbon-Carbon panel #8 at 81.9 seconds after launch.
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 Gross weight 1,667,677 lbs.
* Empty weight 78,100 Ibs.

* Contains 526,000 gallons
of liquid hydrogen and oxygen

» Average thickness of
metallic tank wall: 1/8 inch

» Average thickness of
foam insulation: 1.0 inch

EXTERNAL TANK STRUCTURAL LAYOUT
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Generic Flight Loads on ET Foam Applications
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Nominal Foam Insulation Performance
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Through-thickness Temperature Gradient

Aerodynamic Heating
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SUMMARY OF PRIMARY FAILURE MODES

Failure Mode Primary Contributors Examples
Outer-surface Substrate extension/contraction
cracking Substrate bending
Inner surface Thermal-expansion mismatch .
cracking Cryopumping ?
Substrate debond/ Thermal expansion mismatch
delamination Substrate bending = : suwie sttt -, 2
Temperature gradients |
{,} /
Divoting Pressure gradients | | ,rﬁn_ﬂ.,f_ ”

Temperature gradients
Internal voids
Cryopumping

and popcorning

Shear Aerodynamic loads parallel
to the flow stream
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Foam Void

SIGNIFICANT TYPES OF FOAM DEFECTS
VOID

® Rising foam grows together and encapsulates a pocket of gas
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Intertank Flange Area
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How Spray Defects Can Lead to Divoting

Aerodynamic
Heating
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. / As heat penetrates the foam,
Spray defect containing pressure in defect void rises.
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Possibly resulting in
foam failure and divot.
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Popcorning
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Goal

Performing fundamental research studies to improve structural
mechanics and fracture mechanics methods for foam will help
to improve Shuttle safety by helping to understand foam failure.
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The Foam

Glenn Research Center at Lewis Field



Shingle Spray Process

lines

e
Spray '

Note: For typical acreage sprays,

=h
Substrate Substrate H H o:lp
Coordinates A=axial
R=radial

If theta<10 degrees, can assume material
and sub sirate coordinates are aligned
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Foam Material is Unlike Traditional Engineering Materials

* 97% air

* polymeric cell walls

e due to its microstructure material is anisotropic (possess
different material properties in different directions)
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Figure 3.5 — Cell Geometry, NCF124-124
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BX-265 Cell Dimensions

Vertices have 17 um edge length
and average radii of 18 pm

Face

Deformed cell faces thickness
Faces are thin membranes
0.1<t<1.0 um
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Development of Foam Unit Cell

Elongated Tetrakaidechahedron
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Example — Heating of Foam

* As foam heats (e.g. during ascent) the cell gas
expands and exerts pressure on the polymeric
skeleton (cell walls)

e Additionally the polymer decomposes and out-gasses
to create more cell gas

o Cell pressure can eventually overwhelm polymer
strength and cause cell failure
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As the foam is a polymer, it undergoes several physical and
chemical changes upon heating (namely out-gassing)

Out-gassing upon heating:

» weakens cell walls

e creates significant internal pressures ‘ ‘
e results 1n a unique thermal expansion

behavior

Heated
shape

Cell pressure increase — cell
expansion — cell failure

Original

shape
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Hot Stage Experiments
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Cell expansion
due to thermal
treatment.

Cell expands
mostly in the
width direction
(perpendicular
to rise)
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Thermal Expansion Tests
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Modeling
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Current ET Foam Analysis Methods

* Finite Element-Based Analysis
 Models foam as a linear elastic solid

— Generalized Hooke’s law for linear elastic solid
 Material Testing for Property Characterization to feed FEA

— Determine strength and stiffness as a function of temperature
— Accounts for directional dependence

aij = Cijki€xi

Cijit = F(T) m

Stress

Finite Element Mesh of I[IFR

ET Ice Frost Ramp (IFR)
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Material Physics/Mechanical Behavior

e Foam is a cellular material
— Foam failure initiation is due to the solid skeleton stresses
exceeding the strength of the polymeric walls and struts
« Elongated cells result in directional dependence

e Material behavior is highly temperature dependent

— Polymer walls and struts “soften” with increasing
temperature (e.g., glass transition temperature)

— Temperature dependent internal cell gas pressure

— Internal cell gas pressure increases due to out-gassing from
the polymer solid skeleton at elevated temperatures.

The shortcoming with the current modeling approach is that it is not capable
of distinguishing between the solid skeleton stresses and cell gas pressure
contributions to the total stress and it is therefore not capable of predicting the
solid skeleton stresses.
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The Effect of Internal Cell Pressure Is
Evident in Simple Tensile Test Results
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1 atm. is a large fraction of the material strength
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Application of Porous Media Principles to
Foam Thermo-mechanics
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Generalized 3-D Constitutive Relations for Porous Media

aij = Cijki€k —aijj P

OF jki  the elastic stiffness tensor

Qjj stress-pressure coupling tensor
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Internal Cell Gas Pressure Is a Function of
Temperature and Time-Temperature History

Cell Gas Pressure Calculated with
the Ideal Gas Law

P= ,Bgas RT

Pgas , the molar density of the gas in
the cells, given by

P — NO dps Thermogravimetric Analysis of Pulverized BX-265
Pgas = Pgas + I—dt P |
100 \N .
~0 g
Pgas the initial molar gas density = o \
2 .

dﬁ the rate of change of molar density
dt  due to out-gassing from the solid 0 | | ~
Determined from TGA experiments ° 200 400 600 800

Temperature (C)
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Flow Chart for Pore Pressure Analysis
Approach

ABAQUS FE Thermal
Analysis Solution

Nodal temperatures:
Tempelature Distributions in the Foam

Finite Element Mesh GRC-S
upplied
of Foam Application Sub ptp
uoroutine

Nodal internal cell gas pressures:
Plc%%ulc Distributions in the Foam

ABAQUS FE Structural Solid Skeleton
Analysis Solution Stress Distribution
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Summary

* Foam debris 1s liberated by multiple foam shedding mechanisms.

* Foam defects are a major player in foam loss and debris liberation.

* Fundamental studies of foam material behavior will help to
improve Shuttle safety and reliability by improving our
understanding of foam structural response, failure modes and
debris liberation.

* Modeling External Tank foam material 1s much more difficult
than modeling more traditional engineering materials.
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