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The External Tank (ET)
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External Tank’s Spray On Foam Insulation (SOFI) is applied 
to maintain cryogenic propellant quality, minimize ice/frost formation,
and protect the structure from ascent, plume and reentry heating.
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Columbia Accident Investigation Board (CAIB) found that ………
“the cause of the loss of Columbia and its crew was a breach in the Thermal Protection 
System on the leading edge of the left wing. The breach was initiated by a piece of insulating 
foam that separated from the left bipod ramp of the External Tank and struck the wing in the 
vicinity of the lower half of Reinforced Carbon-Carbon panel #8 at 81.9 seconds after launch. ”
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• Gross weight 1,667,677 lbs.

• Empty weight 78,100 lbs.

• Contains 526,000 gallons 
of liquid hydrogen and oxygen

• Average thickness of 
metallic tank wall: 1/8 inch

• Average thickness of 
foam insulation: 1.0 inch
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Generic Flight Loads on ET Foam Applications

Aerodynamic 
Heating

Aerodynamic 
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Cryogenic 
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Tank Wall
SOFI Outer (Hot) Surface 

Removed by 
Ablation/Recession

Thickness of the SOFI 
Insulation Decreases 
with Time. 

Heat

Nominal Foam Insulation Performance
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Aerodynamic Heating

Tank Wall

Virgin SOFI Foam

Heat Affected
Char Layer

Ablated Material

70 - 200 oF
200 - 500 oF
> 500 oF

-423 oF

-423 – 70 oF

Temperatures

Through-thickness Temperature Gradient



10Glenn Research Center at Lewis Field

Inner surface
cracking

and popcorning
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Foam Void
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Intertank Flange Area

9”



13Glenn Research Center at Lewis Field

Aerodynamic 
Heating

How Spray Defects Can Lead to Divoting

Spray defect containing 
air at 1 atm pressure

As heat penetrates the foam, 
pressure in defect void rises.

Possibly resulting in 
foam failure and divot.
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Popcorning

0.001 sec 0.001 sec

1”
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Performing fundamental research studies to improve structural 
mechanics and fracture mechanics methods for foam will help 
to improve Shuttle safety by helping to understand foam failure.

Goal
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The Foam
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Shingle Spray Process

Knit lines
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Figure 3.5 – Cell Geometry, NCFI24-124

• 97% air
• polymeric cell walls
• due to its microstructure material is anisotropic (possess 
different material properties in different directions)

Foam Material is Unlike Traditional Engineering Materials

Parallel-to-rise 
direction

Perpendicular-to-rise 
direction
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BX-265 Cell Dimensions

Faces are thin membranes 
0.1<t<1.0 μm

vertex

faces

Face
thicknessDeformed cell faces

Vertices have 17 μm edge length
and average radii of 18 μm
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Elongated Tetrakaidechahedron

l1

l2

l3

l3 = 39 μm
l2 = 69 μm
l1 = 109 μm

l4

l4 = 28 μm
20

0 
μm

140 μm

Development of Foam Unit Cell

FEM Model
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Example – Heating of Foam

• As foam heats (e.g. during ascent) the cell gas 
expands and exerts pressure on the polymeric 
skeleton (cell walls)

• Additionally the polymer decomposes and out-gasses 
to create more cell gas

• Cell pressure can eventually overwhelm polymer 
strength and cause cell failure 
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Out-gassing upon heating:
• weakens cell walls
• creates significant internal pressures
• results in a unique thermal expansion 
behavior

As the foam is a polymer, it undergoes several physical and 
chemical changes upon heating (namely out-gassing)

Cell pressure increase → cell 
expansion → cell failure
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After heating

Before test

Temp=150 C

Hot Stage Experiments

Cell expansion
due to thermal
treatment.

Cell expands 
mostly in the
width direction
(perpendicular
to rise)

Temp (° C) block
length width

20 0 0 0
150 15-25 6.6 28.8
20 5-13 -4.6 13.6

cell
strain (%)
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Thermal Expansion Tests
Thermal Expansion of BX-265, Block 3
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Modeling
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Current ET Foam Analysis Methods
• Finite Element-Based Analysis
• Models foam as a linear elastic solid

– Generalized Hooke’s law for linear elastic solid
• Material Testing for Property Characterization to feed FEA

– Determine strength and stiffness as a function of temperature
– Accounts for directional dependence

klijklij eC=σ

ET Ice Frost Ramp (IFR)

Finite Element Mesh of IFR

)(TfCijkl = Notched Tensile Behavior
BX265, Manual Spray, 1-1 Orientation
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Material Physics/Mechanical Behavior

• Foam is a cellular material
– Foam failure initiation is due to the solid skeleton stresses 

exceeding the strength of the polymeric walls and struts

• Elongated cells result in directional dependence
• Material behavior is highly temperature dependent

– Polymer walls and struts “soften” with increasing 
temperature (e.g., glass transition temperature)

– Temperature dependent internal cell gas pressure
– Internal cell gas pressure increases due to out-gassing from 

the polymer solid skeleton at elevated temperatures.

The shortcoming with the current modeling approach is that it is not capable 
of distinguishing between the solid skeleton stresses and cell gas pressure 
contributions to the total stress and it is therefore not capable of predicting the
solid skeleton stresses.
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The Effect of Internal Cell Pressure is 
Evident in Simple Tensile Test Results
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Application of Porous Media Principles to 
Foam Thermo-mechanics

peC ijklijklij ασ −=

xxσ

yyσ

p peCeC xxyyxxxx ασ −+= 1211

peCeC yyyyxxyy ασ −+= 2212

peC ijklijklij ασ −=

Generalized 3-D Constitutive Relations for Porous Media

ijklC

ijα

the elastic stiffness tensor

stress-pressure coupling tensor
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Internal Cell Gas Pressure is a Function of 
Temperature and Time-Temperature History

Thermogravimetric Analysis of Pulverized BX-265
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Flow Chart for Pore Pressure Analysis 
Approach

Finite Element Mesh
of Foam Application

ABAQUS FE Thermal 
Analysis Solution

ABAQUS FE Structural 
Analysis Solution

GRC-Supplied 
Subroutine

Solid Skeleton 
Stress Distribution

Nodal temperatures: 
Temperature Distributions in the Foam

Nodal internal cell gas pressures: 
Pressure Distributions in the Foam
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Summary

• Foam debris is liberated by multiple foam shedding mechanisms.
• Foam defects are a major player in foam loss and debris liberation.
• Fundamental studies of foam material behavior will help to 

improve Shuttle safety and reliability by improving our 
understanding of foam structural response, failure modes and 
debris liberation.

• Modeling External Tank foam material is much more difficult 
than modeling more traditional engineering materials. 
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